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Abstract 

 

 

The hedonic pricing model is commonly used in addressing the issue of air pollution’s 

effect on the real estate market, as it allows for single-variable isolation in inferring a 

variable’s effect on house prices. However, pollution as a variable is found to be 

endogenous per the literature; researchers often omit various factors that can influence 

local particulate matter concentrations that have little impact on house prices themselves. 

This usually leads to researchers deriving an undesirable sign (positive) for their ‘pollution’ 

regressor. The objective of this analysis is to incorporate two meteorological parameters 

(wind direction and wind speed) as instrumental variables (IV) to address the endogeneity 

of air pollution, while  keeping other socioeconomic data constant. The dataset used is for 

8 Census Metropolitan Areas (CMA) in Canada, across an unbalanced panel of 

approximately 16 years (depending on the city), with observations following a monthly 

frequency. Additionally, as the various types of meteorological data did not conform with 

the desired monthly data-recording frequency, temporal disaggregation is implemented to 

express all data in a monthly frequency. Implementing a panel-data instrumental variable 

approach results in a negative coefficient of significant magnitude for the pollution 

regressor. The resulting model demonstrates a highly statistically significant inverse 

correlation between real estate prices and a surrogate measure (concentrations of 

particulate matter of 2.5 microns average diameter) of ‘local air pollution’.  
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I. Introduction 

 As science drives the world’s understanding of air pollution forward, econometric 

(and many other types of) analysts look to answer the increasingly imperative question of 

exactly how much the public values the impact of pollution. Researchers favour the use of 

a hedonic pricing model vis-a-vis real estate prices. This model is constructed by the 

interaction between housing prices and pollutant concentrations of one particular area or 

city, assuming all observable dwelling, neighbourhood, or city-level characteristics are 

controlled for. However, a prevalent issue that is not commonly addressed in the literature 

is the endogeneity of pollution. Hong (2015) was among the first to implement a hedonic 

model incorporating pollution in the context of the Canadian metropolitan real estate 

market. However, Hong derived undesirable (positive) signs for their pollution regressor, 

despite multiple attempts to improve their model specification and construction. Hong 

eventually derived a negative sign for their pollution regressor after incorporating lagged 

values of the dependent variable as an exogenous regressor. Moreover, no attempt to 

address any kind of regressor endogeneity was made in their analysis.  

Additionally, Chay and Greenstone (2005) find pollution to be an endogenous 

regressor; there are often factors which affect local air pollution concentrations that are not 

correlated with house prices themselves. As such, a major motivation for this paper is to 

improve upon Hong’s analysis by addressing the potential endogeneity in the pollution 

regressor. This is achieved by implementing a panel-data, instrumental-variable (IV) 

approach, using  a two-stage-least-squares (2SLS) regression. Chay and Greenstone’s 

instrument was a “non-attainment status” label assigned by the United States Federal 
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Government to counties which polluted over a specified air-quality threshold(s) within the 

observed year. In Canada, however, no equivalent standards are in effect for the provinces, 

let alone metropolitan areas, and as such, this analysis requires different instrumental 

variables.   

Bondy et al. (2018) also find pollution to be an endogenous regressor in their 

analysis of establishing the connection between crime rates and air pollution in inner-city 

boroughs in London. They achieved this by using meteorological data as instrumental 

variables to supplant their pollution regressor; local air-pollution concentrations were 

correlated with local meteorological factors such as wind speed, wind direction, relative 

humidity, and precipitation which could then be used as instruments for pollution.  

Thus, this paper’s approach is to combine the methods laid out by Hong, Bondy et 

al. and Chay and Greenstone to address the endogeneity of air pollution. Specifically, this 

paper combines Hong’s analysis of Canada’s metropolitan real estate market with Bondy 

et al. (2018)’s use of meteorological data as instrumental variables, using wind direction 

and wind speed in a panel-data setting. Additionally, this paper incorporates more 

sociological variables as exogenous regressors compared with Hong’s analysis by 

temporally disaggregating data derived from Statistics Canada from an annual frequency 

to a monthly frequency.  

When implementing a 2SLS model, the use of wind direction and wind speed as 

instrumental variables results in a negative sign for the pollution regressor with significant 

magnitude, without having to explore including lagged values of certain variables as 

additional regressors via a Dynamic GMM approach, à la Arellano & Bond (1991).  
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II. Literature Review 

i. Hedonic Models and Pollution 

The economic interpretation of the hedonic pricing model is that the various 

characteristics of a particular household, and characteristics pertaining to its respective 

neighbourhood, or even city, can be partially differentiated to infer a marginal effect on the 

value of a dwelling, if any of its characteristics or that of its region change by one unit. For 

example, the marginal effect of adding an additional bedroom to a dwelling should affect 

its value in some direction and magnitude, keeping constant all other observed dwelling or 

neighbourhood-specific characteristics. Rosen (1974) was the first to put this into a specific 

economic meaning, per Chay and Greenstone (2005). However, several identification 

problems were pointed out following the publications of several papers, particularly 

Rosen’s, tackling hedonic pricing models when incorporating pollution into their 

regressions. Chief among them were omitted variables; Small (1975) criticized Rosen’s 

analysis for having omitted unobserved neighbourhood characteristics that would be 

correlated with pollution, thus leading to specification issues when attempting to capture 

the true impact of pollution on housing prices. Another important issue is self-selection 

bias: individuals or households that have lower disutility to pollution might self-select into 

areas with higher pollution levels to capitalize on lower house prices. This introduces bias 

in the effects of pollution on house prices and makes estimating the marginal willingness-

to-pay (MWTP) curve more difficult, as taste cannot be assumed to be homogeneous across 

all individuals or households. 
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Chay and Greenstone’s robust analysis of the connection between house prices and 

pollution used a novel instrumental variable approach, along with a variable coefficients 

model to combat endogeneity and self-selection biases, respectively. They collected a rich 

dataset containing data on numerous county-level air-quality variables, including the total 

suspended particulate (TSP) parameter for several counties in the United States, via a 

Freedom of Information Act request, for the years 1970 and 1980.  In trying to combat the 

main issues pointed out by Small, Chay and Greenstone utilize an IV approach to 

circumvent the endogeneity bias: counties that polluted above a certain amount mandated 

by the United States government as being tolerable were designated as having a “non-

attainment” status. They argue that this designation has a direct effect on air pollution, 

which is not correlated with house prices or taste. When they included county-level 

covariates and flexible forms of these covariates (i.e. quadratic and cubic forms), they 

found a negative association between house prices and air pollution. Chay and Greenstone 

also incorporate different approaches to explore the extent to which tastes among the 

different counties were heterogeneous in their preference to pollution. They accomplished 

this by complementing their instrumental difference-in-differences approach with a 

variable coefficients model, in which each county has its own coefficient on the marginal 

effect of pollution on house prices. By implementing a difference-in-differences approach, 

and utilizing instrumental variables, Chay and Greenstone handily addressed the issue of 

omitted variable bias by eliminating time-invariant unobserved factors by first-

differencing, and accounting for variable endogeneity by using “non-attainment status” as 

an instrument for pollution (measured in μg/m3 of PM2.5). The other main issue pointed out 

by Small is the heterogeneity in preference (taste) with regard to pollution and house prices; 
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those who have a lower disutility to pollution will move to areas with higher pollution to 

capitalize on lower house prices. To account for this, they implement a variable-

coefficients model, whereby each county obtains its own coefficient on the marginal effect 

of an increase in total suspended particulate matter on house prices. They found that the 

average non-random sample of a county’s population reflects a negative correlation with 

regard to pollution and house prices when accounting for regional fixed effects and 

covariates taken from the census (including quadratic transformations) for the years Chay 

and Greenstone were able to obtain data. In other words, the coefficient for pollution was 

relatively poolable. The range to which this coefficient varied across counties was not 

found to be large, and was shown to be negative. 

In his analysis of pollution affecting Canadian house prices, Hong (2015) 

acknowledges the same issues echoed by Chay and Greenstone and utilizes a longitudinal 

model by collecting data describing annual resale prices of homes, averaged over the level 

of the “Census Metropolitan Area” (hereafter CMA). Statistics Canada defines a Census 

Metropolitan Area as an “area consisting of one of more neighbouring municipalities 

situated around a core. A CMA must have a total population of at least 100,000 of which 

50,000 or more live in the core.” Hong utilizes two indices to capture annual average house 

prices: the New Housing Price Index (NHPI) from CANSIM, and the Teranet-National 

Bank House Price Index (THPI). The THPI index gave more robust results (per Hong) 

because this index also captures resale prices of homes, and not just initial sale price. 

However, due to utilizing annual data, they did not have many explanatory covariates to 

control for at a fine geographic level, utilizing only the unemployment rate, average total 

income, population at time 𝑇 = 𝑡, and through further model specification, pollution at 
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time 𝑇 = 𝑡 − 1, as these are all available on an annual basis from Statistics Canada. Hong 

obtains pollution data from Environment Canada, where total suspended particle readings 

are collected by 64 federal monitoring stations across Canada. Through various iterations 

of his model, such as fixed-effects, random effects, and first-differencing, Hong finds a 

negative association between pollution and house prices at the geographical scale of the 

CMA, although only through reliance on a lagged-time variable, as they acknowledge that 

the effects of pollution likely aren’t to be felt immediately. 

         Expanding the context of Canadian hedonic models, Li et al. (2006) conduct a 

similar study to Hong’s but omit any focus on pollution or another type of environmental 

externality that might influence the average/median house prices. And while they do 

compare and contrast different functional forms of their model, including a semi-log, log-

log, and a linear model with a Box-Cox transformation applied to the dependent variable, 

they model only one cross-section in the Ottawa-Gatineau region. As such, they are unable 

to control for various unobserved characteristics of the prices of these houses in general, 

although they do collect more data at the neighbourhood/borough scale than this paper, 

because they were able to obtain exclusive data generated by the Multiple Listing Service 

(MLS). They find that conducting a Box-Cox transformation rejects the functional form of 

a linear model, and variants thereof, including logs in the model. The Box-Cox 

transformation, while correcting for non-normality in the transformed variable, changes 

the interpretation of this variable in terms of its units. In addition, the dependent variable 

need not have a normal distribution, and needs only that the errors from our model conform 

closely to a normal distribution.  
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 Chan (2014) focuses on the West Vancouver real estate market, focusing on 

incorporating spatial data within the city of West Vancouver to differently weigh the 

observations. They find that Ordinary-Least-Squares (OLS) overestimates real estate 

values by not being able to incorporate spatial effects into considerations of real estate 

values,  leading to a geographically-weighted regression model, resulting in the best model 

for out-of-sample prediction of real estate prices. 

ii. Wind Direction & Speed as Instruments 

 In the previous section, it was noted that endogeneity of pollution is a persistent 

issue in deriving accurate measurements of the effects of local pollution on house prices. 

Chay and Greenstone utilized the 1974 “non-attainment” designation of over-polluting 

counties in the United States between the years 1970 and 1980 to instrument for pollution. 

However, the Canadian government has not set equivalent standards for air pollution at the 

CMA level, and as such, there is no equivalent instrument, therefore an alternate variable 

is needed to combat the issue of endogeneity. 

 Bondy et al. (2018) derive a link between air pollution and crime rates in inner-city 

boroughs of London, England, by utilizing wind direction as an instrument for air pollution. 

In addition to exploiting a panel-data structure, and comparing fixed and random-effects 

models to eliminate time-invariant unobserved factors, they also use wind direction to 

combat the time-varying factors as well, finding a relevant and robust instrument to 

establish a contemporaneous link between crime rates and air pollution in London. They 

cite other sources conducting similar research in Chicago and Los Angeles, noting the work 

of Anderson (2015) and Deryugina et al. (2016) that find similar positive links between 

crime rates and air pollution, and with the use of daily wind direction as an appropriate 
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instrument for measured air-pollution parameters. However, in Bondy et al. (2018), 

London has the infrastructure, and the environmental monitoring capability, to collect TSP 

readings across several boroughs of London, with wind direction found to be 

heterogeneous across London. This localized monitoring capacity allowed borough-level 

data to be utilized when constructing their model. In the case of this paper, as multiple 

metropolitan areas will be compared, the availability of comparing this heterogeneity of 

wind and environment data is not feasible.  

iii. Temporal Disaggregation 

It is a frequent issue in economics that the recording frequency of the temporal data 

available does not meet the frequency needed to make robust inferences based on large-

sample asymptotic properties. High-frequency data also allow the researcher to account for 

the variations in the dataset that occur at that lower monitoring-frequency level, whereas 

those variations often disappear in being aggregated in a higher (i.e. longer) frequency 

level. For example, fluctuations of TSP readings and other environmental variables vary 

minute to minute, hour to hour, day to day, let alone, month to month. This variation in the 

data is often completely absorbed when making the aggregation to a longer frequency that 

conforms with the recording frequency of other potentially related data. Garrett (2002) 

compares the differing ways in which data available at different monitoring frequencies, 

due to being aggregated, or disaggregated, can affect the inferential capabilities of 

regression estimators, and their efficiency. They summarise that the Residual Sum of 

Squares (RSS) of regressions conducted on aggregated data often “can be larger or smaller 

than the sum of RSS of less aggregated regressions”. This is found mainly in the correlation 

between the residuals of the regressions of the disaggregated data. If these residuals are 
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found to be highly correlated with other regressions at the same level of data 

disaggregation, then standard errors are affected. Consequently, the overall R-squared is 

deflated at the aggregated-data level. Often the costs associated with high-quality data 

collection at an elevated frequency become prohibitive for many agencies to conduct. As 

such, the data are usually collected at the most economically feasible rate, depending on 

the party’s balancing of technical needs and pragmatism.  

For an example relating to this analysis, Statistics Canada collects a substantial 

amount of information in Census Metropolitan Areas (hereafter CMA) across Canada at 

many different time frequencies, including quarterly, annually, monthly, semi-annually, 

and so on. However, as addressed in the following Data Collection section, the 

environmental data collected for this project (i.e.  wind direction and speed, and respirable 

particulate matter with a mean diameter of 2.5 microns) are available at a very fine temporal 

frequency from Environment Canada. Air-quality data from the nation-wide monitoring 

network are available at an hourly frequency, (with some missing observations), and wind 

direction and speed data, as well as other environmental data (like precipitation) are also 

available at an hourly frequency, if not, daily. These time frequencies contrast with the 

covariates used in this model that pertain to the demographic and socioeconomic factors of 

census metropolitan areas. These latter variables are available usually only at an annual 

frequency, although sometimes monthly data can be found. This creates a challenge in 

defining how compromise will best be established between: (i) how aggregation  to a  

lower-frequency time-averaging period will absorb (and obscure) the fine variations in the 

high-frequency datasets, on the one hand, and (ii) how best to disaggregate lower-

frequency data (e.g. socioeconomic factors, like median family income) to a finer 
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frequency that will perform well in statistical inference, on the other.  The compromise 

established in this paper will be disaggregate or aggregate data to a monthly frequency, 

which corresponds with the data-recording frequency used in the Teranet House Price 

Index and CANSIM’s National House Price Index datasets. The environmental data (e.g. 

PM2.5 concentrations, wind direction, and wind speed) were thus aggregated to a monthly 

time step by averaging the observations recorded over the days/hours for the period of 

record, omitting any missing observations.  All demographic and socioeconomic data were 

disaggregated from an annual level to the same monthly frequency. This was accomplished 

using the Denton-Cholette temporal disaggregation algorithm, based on methods proposed 

by Denton (1971) and Dagum and Cholette (2006). This algorithm, along with others such 

as Jacobs (1994), and Wei and Stram (1990), perform disaggregation using purely 

mathematical methods, having no regard to the variations from the economic or 

sociological factors contributing to variability that might occur at that higher frequency, as 

is usually addressed in methods used by Chow-Lin (1971), and Litterman (1983). Both 

types of algorithms rely on an “indicator series”, a time series which serves as a “guide”; 

this is a high-frequency time series that contains variations in its data that the lower-

frequency dataset can emulate. This is usually done by  estimating an Autoregressive of 

Order 1 (AR(1)) coefficient to impute the observations of the higher-frequency time series. 

This can present an issue, where a dataset recording at the desired higher frequency, that is 

also correlated with the lower frequency data, might not be available to perform the 

imputations. This is where the methods proposed by Denton (1971) can perform these 

imputations, as they do not rely on available and sufficiently correlated empirical data 

series, rather they estimate an autoregressive coefficient, where the indicator series is only 
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a constant; usually a vector of ones. This allows the higher-frequency observations to be 

imputed, but at a rate that is relatively smooth, and does not deviate much from the overall 

structure and movements from the original higher-level time series data. Of course, if an 

empirical indicator series is available, and if it is sufficiently correlated with the data 

needed to be disaggregated, that will emulate the empirical movements in the data that 

likely did occur but,  because the data collection did not occur at this frequency, could not  

be observed. In regard to this project, of the data collected by Statistics Canada to be used 

as control covariates, most are available at only an annual frequency. Further, and 

unfortunately, data available at a monthly frequency concerning the geography of Census 

Metropolitan Areas would not be appropriate to perform these imputations, or were not 

available for enough of the Census Metropolitan Areas. In addition, when selecting 

indicator series with which to perform imputations, with complex time-series data like 

median household income, there is little consensus as to what series can serve as a good 

basis to perform the imputations. As well, it may be one of many, and traditional goodness-

of-fit measures might not be representative of what the best imputations or forecasts are.  

Muller-Kademann (2014) derives a methodology to validate the strength of temporal 

disaggregation imputations by testing the internal consistency of the model itself using 

what Muller-Kademann calls a “cloud chamber” approach, similar to how physicists 

measure the fallout of undetectable particles after exposure to radioactive decay. This is 

quite novel, as Muller-Kademann notes, as conventional methods to validate the temporal 

disaggregation rely on external validations. Further, in comparing imputation based on an 

empirical dataset correlated with the time series needing to be imputed, with imputation 

based on a constant, even when using a strong indicator series, the two time series might 
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drift apart from each other, or follow movements that do not conform with mutual 

consistency. As such, imputation in this project will rely on imputation by estimating the 

AR(1) coefficient based on a constant-vector for the relevant time series. 

 

III. Data Sources and Collection 

As was previously noted, the three main categories of data constituting this 

analysis consist of the real-estate data for residential property values derived from the 

Teranet House Price Index (THPI) and the National House Price Index by CANSIM 

(NHPI), Environment Canada’s historical environmental data that will serve as the main 

(endogenous) independent variable and the instruments that will be used to account for 

endogeneity, and other controlling covariates (constituting demographic and 

socioeconomic factors) from Statistics Canada. Each of these three types of data, as 

described previously, is available in differing frequency of collection from one to each 

other. The THPI and NHPI data are available on a monthly basis, data from Environment 

Canada are  available on a daily or hourly basis, and the covariate data from Statistics 

Canada are mostly available on an annual basis. As was detailed at the end of the 

previous section, the latter two categories of data will be aggregated and disaggregated, 

respectively, to a monthly frequency to match the frequency of the THPI/NHPI housing 

indices. Apart from the THPI/NHPI data, the other two sources of data were manipulated 

in the statistical computing environment R using various software packages and statistical 

functions, as well as in Microsoft’s Excel software. The datasets were cleaned of 

problematic properties such as missing observations or typing/input errors, and the 
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resulting data were coerced  to conform with a format conducive for regression analysis. 

The data are spread across 8 panels (cities) with a time period for each ranging from 173 

to 193 months, resulting in an unbalanced panel set.  

i. Teranet House Price Index 

 The Teranet House Price Index is a joint initiative run by Teranet Inc. and The 

National Bank of Canada, where the index is calculated over averaging “sales pairs” of 

homes; homes that have been sold at least twice have the rate at which their property values 

increase or decrease in those two time periods. Only the data pertaining to the scale of 

CMA are available to the public, however commercial enterprises can obtain data 

disaggregated down to the Forward Station Area (FSA) scale, and other finer scales. The 

data availability from the THPI differs from one CMA to another, but most of the series 

data are available from July of 1990, with Calgary and Edmonton being two of the few to 

have a later start date (being March of 1999).  This index’s rate of change at any time period 

can consist of homes that have not been sold within that time period. In such cases, the 

value change is inferred by other homes that have been sold in this period. This allows for 

homes that have not been resold in a certain time frame to have their estimated value, as a 

part of the average of that geographic area, imputed. This method is not without significant 

caveats to those who wish to conduct an analysis using these data. Some of these caveats 

are even explicitly stated on THPI’s website, mainly with regard to endogenous factors not 

being captured in their method (Teranet Inc. & National Bank of Canada, 2020): 
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● The dwelling’s property type can change between periods 

● Arm’s-length sales are not captured 

● High turn-over frequency can skew data 

 

Additionally, this method relies on an assumption that is explicitly stated; that there is a 

“constant level quality between the sales in a linear fashion”.  This can further add to the 

problem of endogeneity as dwellings often can go through renovations, suffer damage, or 

are not maintained to resist the daily wear-and-tear on the dwelling. 

These caveats have been echoed with regard to the “repeat-sales” approach taken up 

by some economists, as explored by Li et al. (2006), in their analysis of constructing a 

hedonic model with data concerning several boroughs in the Ottawa-Gatineau area. In 

addition to these caveats, another inconvenient challenge in using the data collected for 

these dwellings is that only homes that have been sold at least twice are captured in the 

data collection. This automatically presents a selection bias when performing any kind of 

regression analysis; any homes that have not been sold at least twice, let alone those that 

have not been sold at all, are not captured (though their value is inferred), which can cause 

significant bias in estimating the necessary coefficients. This adds further to the existing 

selection bias that is present in this analysis; only Census Metropolitan Areas are 

considered. Consequently, rural property values, or towns/cities that do not qualify as 

Census Metropolitan Areas as defined by Statistics Canada, cannot be captured and used 

in the analysis. However, if there were to be some data present from these geographical 

areas, one could compensate for the selection bias by performing a Heckman Correction; 

this correction codifies variables in the dataset that have some data, particularly covariate 

data (whether exogenous or endogenous), but no data for the dependent variable, by means 

of a ‘dummy’ variable. These observations would then be weighted by the Inverse-Mills 
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ratio and have the observations that do have all needed data observations, would have their 

weights be incorporated into a weighted-least-squares (WLS) regression. (Heckman, 1976) 

Unfortunately, this is not the case here, as this analysis will incorporate needed time-

varying covariates to control for omitted variable bias, and as such, not having this data 

available for those cities/towns/rural areas would only contribute to time-varying omitted 

variables being a part of the error term that traditional panel data regression methods like 

Fixed Effects (Within) or Random-Effects models cannot account for. Regardless, this 

paper’s regression methods will incorporate the THPI data acting as the dependent variable, 

alongside comparing the NHPI data, to see if one fits our models better. 

ii. National House Price Index 

The National House Price Index (NHPI) is also available at a monthly frequency. 

The NHPI captures contractors’ sales on dwellings that have specific details pertaining to 

the dwelling remain constant between two consecutive months. In a notable difference 

from the data collected by the THPI, the NHPI collects this same data about the land on 

which property lies, while collecting data on three different types of dwellings (single 

homes, semi-detached homes, and townhouses) available to researchers to distinguish 

between when selecting their data. As well, some components of the NHPI, according to 

Statistics Canada, are incorporated into the Consumer Price Index as well, which is also 

available monthly. In another difference from the THPI, the NHPI accounts for quality 

changes over time. The survey conducted by Statistics Canada contains a questionnaire 

that includes detailed questions pertaining to the characteristics of the land and dwelling. 

Accounting for these quality changes in dwellings and land allows the NHPI to report only 

the “pure price change over time”. As will be covered later, the THPI fits our model better, 
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providing a higher adjusted R-Squared, more coefficients with signs that are desired, and 

coefficients with smaller standard errors, though issues with both models will be discussed. 

iii. Pollutant and Climate Data 

 The crux of this analysis relies on the a priori assumption that air pollution is an 

endogenous covariate, and other environmental data, namely wind direction and wind 

speed, are relevant and strong instruments to combat this endogeneity. Thankfully, all three 

of these variables are collected at a very high frequency by Environment Canada, going 

back sometimes decades for many different geographic areas, including rural and urban 

areas that span nearly the entirety of Canada. Data concerning air particulate matter, 

including particulate matter at the 2.5-micron size fraction (PM2.5), are collected by the 

National Air Pollution and Surveillance Program (NAPS), a division of Environmental and 

Climate Change Canada (ECCC). The ECCC is facilitated by a multi-provincial and federal 

partnership in the collection and monitoring of many airborne pollutants. The unit of 

measurement for the concentration of PM2.5 is μg/m3 (i.e. micrograms per cubic metre of 

air). There are nearly 260 air-quality monitoring stations in over 150 rural and urban 

geographic locations across Canada, with data spanning back decades, depending on the 

location. These data are collected every hour of every day of the year, with the results 

usually posted at a quarterly basis.  For the purposes of this analysis, the stations matching 

a certain CMA are simply the stations that are located within, or just outside of the CMA, 

to include as much data as possible. The results are then averaged across all these stations, 

and then averaged to a monthly value for that CMA (a similar method is followed for the 

wind data).  
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Previous methods in combining data often use the inverse-weighted or inverse-squared-

weighted distance from each station to the relevant geographic area’s “center”; this would 

give stations closest to the geographic center of an area the most weight, and stations further 

away would have their weights reduced (dramatically so, in the case of inverse-squaring 

the distance). However, data for a station close to the center of a geographic area might 

have missing observations or reflect values that are found to often be unique to that station 

alone, when other surrounding stations less weight might have more “correct” 

observations. Therefore, in order to not give any undue favoritism to any station in the area, 

the different stations share equal weight in determining that CMA’s monthly pollution 

level. This same method applies to the wind-direction and wind-speed data. Data pertaining 

to wind direction and wind speed are collected by the Meteorological Service of Canada 

(MSC), where wind direction is measured in tens of degrees from the direction in which 

the wind blows. For an example, a value of 9 means 90 degrees East, or an Eastern wind. 

A value of zero (0) denotes a calm wind, and a value of 36 indicates 360 degrees, or a wind 

blowing from the North pole. All these directions are measured in the context of the 

geographic direction, not magnetic direction. Wind speed is denoted in kilometres-per-

hour (km/h) measured at a height of 10 metres above the ground. 

iv. Covariate Data on Other Control Variables 

 With our dependent, endogenous covariate, and instrumental variables covered, 

what remains is the other (assumed) exogenous covariates that are time-varying 

corresponding to the relevant CMA. These all originate from Statistics Canada’s CANSIM 

data tables. They include:  
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● Homicide Rate (homicides per 100,000 persons) 

● Median After-Tax Household Income (measured/divided by $1,000) 

● Low-Income-Cut-Off (LICO) (Percentage of individuals living below the cutoff) 

● The Unemployment Rate 

● Average Rent of Dwellings 

● The vacancy rate of dwellings  

● Population (measured/divided by 1,000) 

 

While this analysis follows much of the similar construction of Hong’s 2015 hedonic 

model, Hong included only 3 of the preceding covariates (income, population, and the 

unemployment rate), with no additional covariates provided other than the endogenous 

pollution regressor. A noted concern at this time is to control for more time-varying 

covariates to mitigate the possibility of unobserved time-varying variables biasing the 

estimation of our coefficients. All these covariates are measured at an annual frequency 

but are disaggregated via the Denton-Cholette algorithm in the tempdisagg package in R 

to monthly observations.  

A brief overview of the desired sign and relevance of each covariate is discussed 

below with respect to property values.  

Homicide rate’s desired sign is negative, for what should hopefully be obvious 

reasons. Troy and Grove (2008) conduct an analysis to determine whether public parks are 

a desired public amenity, or if there are factors that could determine it to be more of a 

liability, reflected through a hedonic model capturing proximity to a public park as an 

exogenous variable, and crime rate reported in various neighbourhoods in Baltimore, 

Maryland. They find that beyond a certain threshold, property values indeed decline in 

response to higher-than-tolerable crime rates, and that certain public amenities do not 

outweigh this burden.  
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Median after-tax household income’s desired sign is positive but this is not easily 

established in the literature. Families with higher average incomes can afford to purchase 

more expensive homes that often come with more desirable private and public amenities. 

This might be counteracted, however, by a seemingly large household after-tax income 

being made up of a larger-than-average household size, some of whom might move out 

from their respective dwellings at any time, or who may prefer to pay less for more space 

to accommodate the larger families, as noted by Bajari and Kahn (2007).  

Per Statistics Canada, the Low-Income-Cutoffs (LICO) are thresholds which 

families or households “will likely devote a larger share of its income on the necessities of 

food, shelter, and clothing than the average family”. The expected sign for the LICO 

coefficient should be negative. If a larger share of households or persons were to live below 

these thresholds, they likely would not be able to afford dwellings in pricier areas or cities. 

As such, they would likely self-select into neighbourhoods/cities where average house 

prices are lower, to accommodate their higher-than average marginal spending on life 

necessities. The causality, or determining the extent to whether the “chicken or the egg” in 

this scenario is dominant with regards to the LICO vis-a-vis house prices, is beyond the 

scope of this paper, however it seems logical a priori  that neighbourhood, or city-level, 

poverty would in some way be correlated with house prices in a negative fashion. In this 

paper, to eliminate any effect that taxes have on distortions of behaviour, the after-tax 

measure of LICO is used, as usually after taxes, transfer payments and such have been 

incorporated, the income gap is compressed, allowing for a more accurate “take-home” 

measure of income able to affect behaviour. This is supported by research like Leonard et 

al. (2017), where they find neighbourhood/block-level poverty levels are negatively linked 
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to other neighbourhood conditions and amenities, by establishing this link down to 

neighbourhood-level data.  

The expected sign for vacancy rate of properties is negative. If vacancy rates are 

low, one would assume that dwellings for that particular area/city are in sufficiently high 

demand, and meet a sufficient market-clearing rate, that enough home-buyers find homes 

at a rate keeping the proportion of those that do not find homes (i.e. homes that are vacant, 

otherwise) far lower. In other words, a high vacancy rate can indicate an excess of supply 

of dwellings for sale, and ceteris paribus, would lead to lower-than-average dwelling 

prices. Coulson and Zabel (2013) use vacancy rate as an implicit measure of foreclosures. 

They found that house prices can exhibit “downward sticky” behaviour, as the traditional 

mechanisms by which hedonic models operate can be biased if the market is dominated by 

excessive foreclosure, and thereby can display higher vacancy rates. Therefore, because of 

how vacancy rate can have substantial bias in estimating the coefficients, they also 

recommend controlling for their effects whenever a hedonic regression model is used. 
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IV. Methodology and Model Construction 

In this paper, the traditional methods of carrying out panel regressions will be 

included to determine what is the best fit for our model, including the dimension of 

instrumental variables complicating the construction of each method. The following model 

construction will be used conduct the analysis in this paper: 

𝑃𝑟𝑖𝑐𝑒𝑖𝑡  =  𝛽0  +  𝜃𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡
̂  +  𝛽𝑋𝑖𝑡 + 𝜂𝑖  + 𝜀𝑖𝑡 

where: 𝛽0 is our time and panel-invariant constant, which will be included in our typical 

pooled-OLS/IV or  random-effects (RE/REIV) models and dropped in our within 

(FE/FEIV) models; 𝛽 is a 1 x K vector containing the coefficients corresponding with our 

exogenous regressors; 𝑋𝑖𝑡 is a N x K  matrix containing exogenous variable data on our 

observations; 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡
̂  is the fitted values of pollution by fitting our exogenous and 

instrumental regressors onto our endogenous Pollution data in the first-stage of our two-

stage-least-squares (2SLS) regression, which will be detailed below; 𝜃 is the coefficient 

with regards to our fitted-values Pollution data; 𝜂𝑖 is our time-invariant unobserved effect, 

which will be theoretically eliminated in our Within/Fixed-Effects (FE/FEIV) model; and 

𝜀𝑖𝑡 is our idiosyncratic/time-varying error.  

The following will be the first-stage regression in our 2SLS method explained  

above to obtain our fitted values of our endogenous Pollution regressor: 

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡 =  𝛼0 +  𝛼𝑍𝑖𝑡 + 𝜐𝑖 +  𝜔𝑖𝑡 

As established before, 𝑍𝑖𝑡 is a N x L (where L ≥ K) matrix containing our exogenous and 

instrumental regressors; 𝛼 is a 1 x L vector containing the coefficients for our exogenous 

regressors; 𝛼0 is our constant that, like our second-stage regression, will be included in 

only our pooled-OLS and random-effects (RE/REIV) models; 𝜐𝑖 is our time-invariant error 
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for our first-stage regression, which will also be included only in the pooled-OLS and 

random-effects models; and 𝜔𝑖𝑡 is our time-varying/idiosyncratic error for the first-stage 

regression.  

The next section will discuss the results of the various models tested, including an 

examination by which we overcame the alleged endogeneity in our Pollution regressor. 
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V. Model Results and Diagnostics 

i. Non-IV Estimation Benchmarks 

 To begin this section, we will present the results of a pooled-OLS model as our 

benchmark. No random or fixed-effects estimation is utilized. The results are displayed 

below: 

Table 1: THPI vs NHPI OLS Results 

 Dependent variable: 
  
 THPI NHPI 
 (1) (2) 

 

Pollution 1.480*** 0.537*** 
 (0.244) (0.127) 
   

Homicide Rate 4.938*** -1.350*** 
 (0.665) (0.347) 
   

Median Income -3.232*** -0.999*** 
 (0.140) (0.073) 
   

LICO -6.859*** -2.046*** 
 (0.317) (0.166) 
   

Rent 0.208*** 0.074*** 
 (0.005) (0.003) 
   

Unemployment Rate 1.134* 1.668*** 
 (0.643) (0.336) 
   

Vacancy Rate 1.700*** 0.828*** 
 (0.500) (0.261) 

   

Population (per 1,000) -0.007*** -0.004*** 
 (0.001) (0.0003) 
   

Constant 209.617*** 97.117*** 
 (8.915) (4.659) 
   

 

Observations 1,507 1,507 

R2 0.643 0.459 

Adjusted R2 0.642 0.456 

F Statistic (df = 8; 1498) 337.904*** 159.076*** 
 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

As is clear here, and in the following tables, the THPI gives a better fit to our model, 

yielding a higher adjusted-R2, however at the cost of an undesirable sign (positive) for the 
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Homicide regressor. The value of the Pollution regressor is very close to zero in the NHPI 

model, and for the THPI model, gives us the undesirable positive sign. In addition, the 

Vacancy Rate regressor, believed a priori to be negatively correlated with both price 

indices, has however the opposite correlation in both models. The following table 

introduces random-effects to our OLS estimation to account for individual-specific effects 

that may occur. 

 

Table 2: THPI vs NHPI Random-Effects Models 

 Dependent variable: 
 THPI NHPI 
 (1) (2) 

Pollution 0.046 0.070 
 (0.127) (0.074) 

Homicide Rate -0.080 2.642*** 
 (0.562) (0.329) 

Median Income -0.998*** 0.015 
 (0.106) (0.062) 

LICO -2.039*** -0.145 
 (0.188) (0.110) 

Rent 0.262*** 0.101*** 
 (0.005) (0.003) 

Unemployment Rate -6.295*** -2.342*** 
 (0.334) (0.196) 

Vacancy Rate 2.299*** 1.003*** 
 (0.259) (0.152) 

Population (per 1,000) 0.028*** 0.008*** 
 (0.002) (0.001) 

Constant -29.945 -10.662 
 (26.598) (10.503) 

Observations 1,507 1,507 

R2 0.912 0.820 

Adjusted R2 0.911 0.819 

F Statistic 15,492.560*** 6,810.869*** 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

After introducing random effects to our model, the Pollution regressor’s value hovers close 

to zero in both models, the sign for the Homicide regressor is reversed in both models, and 
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our R2 is substantially higher, and the THPI model still performs better than the NHPI 

model. After running both models in the “within” case to introduce individual fixed effects, 

and in the random-effects scenarios, a Hausman test was conducted to see whether one 

model is more consistent. Arriving at a 𝜒8
2 value of 6.4053, this results in a p-value of 

0.6019. Thus we do not reject the null hypothesis, concluding that although both models 

are consistent, the random-effects models is the more efficient. Likewise, to determine if 

there any significant individual-specific effects present in the dataset, we conducted a 

Breusch-Pagan Lagrange Multiplier test, arriving at a 𝜒1
2 value of 8835. In this case, the 

resulting p-value is far below 0.001, thereby soundly rejecting the null hypothesis that there 

are no significant effects. Alas, we are justified introducing individual-specific effects into 

our non-IV models. 

 Though the fit of our models improves in both the THPI and NHPI cases when 

individual-specific effects are introduced, we find an undesirable and insignificant 

magnitude for our Pollution regressor. To seek a more believable model, a model more 

representative of our reality, we will introduce Wind Direction and Wind Speed 

instruments to represent the Pollution regressor seeking more useful results.  

ii. Instrumental Variable Estimation 

 In addressing the endogeneity of our Pollution regressor, Wind Direction and 

Wind Speed are used as instrumental variables in both a pooled-OLS and random-effects 

model. The following table uses these two instruments to fit values for our Pollution 

regressor using 2SLS to address its endogeneity. The results are displayed in Table 3: 
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Table 3: Pooling vs Random-Effects IV Estimation 

 Dependent variable: 
 THPI NHPI 
 (1) (2) (3) (4) 

Pollution -5.081** -8.104*** -6.895*** -3.464*** 
 (2.289) (1.574) (1.777) (0.755) 

Homicide Rate 2.486** -3.444*** -4.128*** 1.186** 
 (1.173) (1.253) (0.910) (0.600) 

Median Income -2.998*** -1.212*** -0.733*** -0.070 
 (0.189) (0.208) (0.147) (0.100) 

LICO -8.197*** -1.389*** -3.561*** 0.138 
 (0.603) (0.386) (0.468) (0.185) 

Rent 0.180*** 0.317*** 0.043*** 0.124*** 
 (0.011) (0.014) (0.009) (0.006) 

Unemployment Rate 2.623*** -5.122*** 3.355*** -1.836*** 
 (0.938) (0.684) (0.728) (0.328) 

Vacancy Rate 2.632*** 1.708*** 1.884*** 0.760*** 
 (0.689) (0.513) (0.535) (0.246) 

Population (per 1,000) -0.004*** 0.003 -0.00002 -0.002 
 (0.001) (0.006) (0.001) (0.003) 

Constant 269.516*** 41.769 164.978*** 19.091 
 (23.395) (25.617) (18.161) (12.101) 

Observations 1,507 1,507 1,507 1,507 

R2 0.495 0.718 0.091 0.612 

Adjusted R2 0.492 0.716 0.086 0.610 

F Statistic 1,801.790*** 4,118.936*** 398.269*** 2,720.917*** 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

For Table 3, the first and third columns are the pooled-IV models, while the second and 

fourth columns are our random-effects IV models. Here we see a stark contrast to the 

situation before with our benchmark OLS estimation. The most significant and helpful 

change is that our Pollution regressor has reversed signs from positive to negative, 

signifying that a more powerful representation of observed realities has been created in the 

THPI random-effects IV model. Additionally, all cases present a substantial magnitude of 

an impact from our Pollution regressor, with the NHPI RE/IV model showing the weakest 
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magnitude of -3.464. Our pooled models show the weakest fits, with the NHPI model 

showing only an adjusted-R2 value of 8.6%. This is in significant contrast with both of the  

RE/IV models, both having adjusted-R2 values exceeding 60%, again with the THPI model 

showing the best fit, and the highest number of regressors having desirable signs. Both our 

Homicide Rate and Unemployment Rate regressors have desirable negative signs in the 

THPI RE/IV model, unlike results from two of the other models implemented. However, 

Median Household Income and Vacancy Rate have undesirable signs across all models 

implemented. This could because of several issues which were discussed in the proceeding 

section.  

 As before, we find the random-effects to provide the best fit compared with that 

of fixed-effects and pooled-IV implementation; conducting a Hausman test we arrive at a 

𝜒8
2 of 1.9713, with its corresponding p-value of 0.4831. We do not reject the null, and find 

the random-effects model more efficient than a fixed-effects model. Conducting a Breusch-

Pagan LM test we arrive at a 𝜒1
2 value of 7950.6 and a corresponding p-value of well below 

0.001. Thus we reject the null and find statistically significant individual-specific effects 

in our data, even when accounting for regressor endogeneity, thereby finding our random-

effects model to be a better performer than our pooled-IV model.  

 Examining whether quadratic regressors should be included in the model, 

Ramsey’s RESET test for functional form was conducted, producing a 𝜒1
2 value of 0.4919 

having a p-value of 0.4831. We therefore fail to reject the null, and conclude that adding 

the squared fitted values from our RE/IV model does not add sufficient significant effects 

to our model to warrant including quadratic regressors.  
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iii. Validity of Instruments 

 In using two instrumental variables to represent one alleged endogenous 

regressor, additional to testing whether these instruments are strong enough to warrant their 

use in an IV model and whether Pollution is an endogenous regressor, overfitting of the 

model must be examined to see whether multiple instruments are needed to supplant the 

Pollution regressor. This is done using the Sargan test, later in this section. And because 

this is not a single cross-section worth of data making up the IV model, the first-stage 

regression must incorporate the random-effects transformation that we apply to the 2SLS 

model as well. Because the THPI gave a better fit compared with the NHPI model in terms 

of adjusted-R2 and the most number of regressors with desirable signs, we will examine 

only the THPI model going forward. The following table gives the first-stage regression 

results of regressing Pollution against all exogenous regressors and the two instruments: 

Table 4: First Stage Random-Effects Estimation 

 Dependent variable: 
 Pollution 

Wind Direction 0.066*** 
 (0.021) 

Wind Speed -0.053*** 
 (0.010) 

Constant 9.097*** 
 (2.701) 

Observations 1,507 

R2 0.072 

Adjusted R2 0.067 

F Statistic 116.987*** 

Note: All other covaries are controlled for 

but are omitted in this table. 
*p<0.1; **p<0.05; ***p<0.01 

 

While our overall fit of the model is not strong, both instrumental variables are statistically 

significant at the 1% level. In addition, a Wald test comparing the first-stage model with 
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the instruments omitted yields a 𝜒2
2 value of 36.782 having a p-value well below 0.001. We 

thus reject the null and find these two instruments are strong and relevant for the model.  

 The connection between concentration of various pollutants or ‘dust’ and several 

meteorological characteristics of an area are well documented in the literature; Csavina et 

al. (2014) extract a complex non-linear relationship among meteorological data for wind 

direction, wind speed, relative humidity, and local PM10 concentrations in several locations 

in the Southwest United States. A similar study conducted by Wang and Ogawa (2015) on 

the relationship among wind direction, wind speed, and PM2.5 concentrations in and 

surrounding Nagasaki, Japan found that above or below a certain threshold of wind speed, 

the correlation to PM2.5 concentration could either be positive or negative. What proves 

advantageous for our analysis is that those analyses usually found that above a certain 

threshold value for wind speed (above 3m/s, per Wang and Ogawa), the correlation 

between wind speed and PM2.5 concentrations is negative. This seems to confirm the 

validity of the sign derived for our Wind Speed regressor (Wind Speed has a minimum 

value of 9.57 km/h in our analysis, substantially above the Wang and Ogawa 3 m/s 

threshold) in our first-stage regression. In terms of meteorological intuition, higher wind 

speeds should logically dilute and disseminate local particulate, thereby reducing 

concentrations in an area of interest. This suggest the necessity to use this information to 

better account for the variation in house price indices when local pollutant concentrations 

change due to meteorological conditions in a CMA of interest. 

 As stated earlier, what remains now is to determine whether our model is 

overfitted by including two instruments for one endogenous variable, instead of using only 

one, and leaving our model exactly identified in moment conditions. We conduct the 
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Sargan test and arrive at 𝜒1
2 value of 15.106, soundly rejecting the null that our model is 

justly identified. Because we have found that our model is overidentified in its restrictions, 

it must be determined which is the better instrument, Wind Direction or Wind Speed. 

Table 5: Comparison of Single-Instrument IV Regressions 

 Dependent variable: 
 THPI 
 (1) (2) 

Pollution 4.308* -11.494*** 
 (2.408) (2.432) 

Homicide Rate 1.645 -4.825*** 
 (1.225) (1.721) 

Median Household Income -0.895*** -1.286*** 
 (0.152) (0.274) 

LICO -2.394*** -1.133** 
 (0.319) (0.519) 

Rent 0.235*** 0.337*** 
 (0.017) (0.019) 

Unemployment Rate -6.891*** -4.627*** 
 (0.556) (0.918) 

Vacancy Rate 2.598*** 1.492** 
 (0.383) (0.679) 

Population 0.040*** -0.006 
 (0.008) (0.008) 

Constant -65.571* 69.419** 
 (38.352) (31.227) 

Observations 1,507 1,507 

R2 0.850 0.591 

Adjusted R2 0.849 0.589 

F Statistic 8,825.667*** 2,372.361*** 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

When reading Table 5, where Wind Direction is the only instrument used in the model on 

the left, while Wind Speed is the only instrument used in the model on the right, certain 

insights emerge in the table. First, according to the literature, Wind Direction was found to 

account better for the endogeneity of the Pollution regressor, yet here Wind Speed extracts 

the desired sign for the endogenous Pollution regressor, and at considerable magnitude (-

11.494), while being more statistically significant than Wind Direction, even though 
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Pollution through Wind Direction is statistically significant as well at the 5% threshold. 

Second, we derive a desirable sign for the Homicide regressor as well, leaving the second 

model with the most regressors having the most desirable signs of the two, despite losing 

a considerable amount of the model’s explanatory power (i.e. a lower adjusted-R2). This is 

disappointing as Bondy et al. (2018) found that Wind Direction was the primary means by 

which they could account for the endogeneity in their Pollution regressor when examining 

London inner-city boroughs. This might be an artifact arising from the various levels of 

temporal (dis)aggregation required to create our dataset for this analysis, or perhaps it 

presents an alternate explanatory framework more descriptive of the meteorology within 

various Canadian metropolitan areas. In the Canadian urban context, Wind Speed is found 

to be a more significant factor to control for when examining the problem of incorporating 

Pollution into hedonic regression models. Regardless, though we have achieved the desired 

sign for our Pollution regressor with a decent fit, there remain several problems with the 

model which will be discussed in the following section, particularly various correlation 

issues.  

iv. Model Caveats 

In the preceding section, we found a desirable random-effects instrumental variable (REIV) 

model captured well the effects of Pollution on the Teranet House Price Index when 

controlling for various exogenous covariates and endogeneity by instrumenting the 

Pollution regressor with the Wind Speed variable. However, two forms of correlation are 

salient issues when discussing the inferential strength of the model established. Firstly, 

cross-sectional correlation: conducting Pesaran’s Cross-Sectional Dependence Test for 

unbalanced panels yields a Z value of 16.06, with a corresponding p-value of well below 
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0.001, thus rejecting the null hypothesis of no cross-sectional correlation between groups. 

However, this result should not be too surprising, as our various cross-sections (Canadian 

Metropolitan Areas) are not randomly drawn for this analysis, and the changes of one city 

can plausibly affect the circumstances/characteristics of another city, which further 

reinforces the selection bias described earlier. Accordingly, including more 

municipalities/town with all their available data pertaining to our exogenous/endogenous 

and instrumental variables, while potentially missing price data from the THPI or the 

NHPI, would be a prudent follow-up examination. Conducting a Heckman correction for 

sample-selection biases, one could account for the biases occurring from the non-random 

samples we have here.  

 The second issue is serial autocorrelation in the errors, to which a Dynamic Panel 

Data model can be applied to correct for this issue, as in Arellano & Bond (1991) who use 

a Dynamic Generalized-Method-of-Moments (GMM) estimation. While serial 

autocorrelation will not bias our estimators, it will bias their variances. Conducting a 

Breusch-Godfrey test for serial correlation yields a 𝜒178
2  value of 1477.7, suggesting that 

we reject the null hypothesis of no serial correlation in the errors of our REIV model. Due 

to the attributes of the data used in this paper, our panel has a small number of geographical 

cross-sections (only 8 CMA’s), and a large number of months for which these cross-

sections have data available or imputed for (from 178 to 193 months). The dataset could 

therefore be described as a “small-N, large-T” dataset. Often, the desirable characteristics 

in which Dynamic Panel Data modeling is conducted are the opposite, where there are 

many cross-sections available, and the length of time available to each cross-section is 

small. This is due to having a large headroom for incorporating many regressors and 



 33 

instruments, which are often time-lagged (allowing also the inclusion of lagged dependent 

variables) by various lengths to capture the effects of past values of the regressors affecting 

the value of the dependent variable at time T = t.  Because our dataset only has 8 cross-

sections, we do not have much headroom for including lagged regressors/dependent 

variables before we overfit our model and estimation becomes highly constrained, perhaps 

even not possible (i.e. K > N will occur very quickly). As such, in order to not estimate a 

Dynamic Panel model with very few regressors, we will correct the standard errors of our 

estimators by utilizing the covariance matrix estimation proposed by Driscoll and Kraay 

(1998) which was found to be robust against cross-sectional and serial correlation in a T-

asymptotic context regardless of the dimension of N, which describes our large-T dataset 

aptly. Upon correcting for these two biases we are left with the following coefficients and 

their standard errors: 
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Table 6: Robust Estimation of Coefficients 

 THPI 

Pollution -11.494*** 
 (2.109) 

Homicide Rate -4.825** 
 (2.053) 

Median Household Income -1.286*** 
 (0.262) 

LICO -1.133 
 (0.747) 

Rent 0.337*** 
 (0.019) 

Unemployment Rate -4.627*** 
 (1.568) 

Vacancy Rate 1.492 
 (1.360) 

Population -0.006 
 (0.008) 

Constant 69.419* 
 (41.345) 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

We lose statistical significance on some of our regressors compared with our 

homoscedastic-REIV model, however our Pollution regressor is still statistically 

significant, which again is instrumented via Wind Speed.  

 In summary, though some issues of serial and cross-sectional correlation remain 

present, correcting for these biases in the standard errors in our REIV model still leaves us 

with the desired sign for our Pollution regressor, which is highly statistically significant. 

The magnitude of our Pollution regressor infers that an increase of PM2.5 concentration 

(μg/m3) either from one CMA to another, or from one month to another within the year, 

will yield, ceteris paribus, an average decrease of ≈ 11.5 points in the Teranet House Price 

Index.  
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VI. Conclusion 

 Though the hedonic pricing model is a common method of measuring the impacts 

of various pollutants on real estate markets, regressor endogeneity is a recurring issue in 

many analyses. As such, its influence should be counteracted by implementing proper 

instrumental variables in the hedonic model used. Previous literature established Wind 

Direction a priori to be the better instrumental variable for representing the Pollution 

regressor. However, the results of this study suggest that in Canadian Metropolitan Areas, 

Wind Speed is a superior instrument which both yields the desired negative sign for the 

Pollution regressor, and results in the highest number of regressors displaying desired 

signs. There may be an issue in this approach regarding performance of temporal 

disaggregation and aggregation on the various data sources within the subject dataset, 

whereby some of the effect of a certain variable is diminished or absorbed by being 

aggregated to a lower frequency, or disaggregated to a higher frequency. Regarding 

temporal disaggregation, using a proper indicator time-series set would be an improved 

method for future research; the variable being temporally disaggregated can better impute 

its values at that higher frequency.  

 Additionally, this analysis contains both a selection bias and a cross-sectional 

dependence bias, due to the nature of the sample selected (Canadian metropolitan areas) 

not being random. Two steps may be taken to correct this: the first is to include all 

municipalities and cities that have data recorded for exogenous variables. The second is to 

conduct a Heckman Correction on those that do not have data for the dependent variable, 

which would help correct for the observations that do have data on the dependent variable.  
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 Finally, researchers require access to more pricing data for the Canadian housing 

market, metropolitan or otherwise, in order to conduct a more thorough analysis of this 

subject. Access to these data would undoubtedly shed further light on air pollution’s true 

impact on Canada’s real estate market. Because of the toxicity of suspended particulate 

matter, especially PM2.5 (CEPA 2007), the ability to use these data could also allow 

exploration of the urban regional public-health implications of TSP, especially PM2.5, and 

whether areal concentration distributions can predict real estate price indices. 
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Appendix 

A. Summary Statistics of Data 

 

Table 7: Summary Statistics of All Data Used 

Statistic N Mean St. Dev. Min 25% 75% Max 

THPI 1,507 132.257 39.111 63.990 96.175 164.730 249.530 

Wind Direction 1,507 22.175 3.509 10.182 19.996 24.514 32.400 

Wind Speed 1,507 38.695 11.527 9.567 38.817 45.456 59.364 

Pollution 1,507 7.289 2.737 2.294 5.355 8.751 22.717 

Homicide Rate 1,507 1.941 1.065 -0.220 1.222 2.629 5.427 

Median 

Income 

1,507 58.736 8.161 43.810 52.390 62.908 86.519 

LICO 1,507 11.623 3.132 4.109 9.145 14.098 19.324 

Rent 1,507 839.645 202.039 502.829 678.978 984.696 1,370.965 

Unemployment 

Rate 

1,507 6.224 1.493 2.780 5.115 7.265 10.045 

Vacancy Rate 1,507 2.275 1.417 0.241 1.247 3.144 7.501 

Population 1,507 2,102.551 1,642.983 694.968 962.461 3,528.748 6,300.593 

NHPI 1,507 83.229 16.597 43.100 72.150 97.550 116.700 

 

 

Table 8: Summary Statistics of PM2.5 by CMA 

City Mean St.Dev Min Pctl25 Pctl75 Max 

Calgary 7.751759 2.943005 3.609768 5.788439 9.066864 22.71700 

Edmonton 7.637009 2.922817 3.532206 5.667863 8.745143 21.76546 

Montreal 9.411391 2.472093 5.003084 7.752516 10.945052 20.29551 

Ottawa 6.494898 2.021477 2.614247 4.959157 7.395112 14.15540 

Quebec 8.467101 2.235136 4.695193 6.707065 9.786245 15.05940 

Toronto 7.976211 2.576290 3.173067 6.005008 9.423589 16.55883 

Vancouver 4.899058 1.413597 2.294248 3.899672 5.845022 12.32570 

Winnipeg 5.437995 1.600464 2.664074 4.323558 6.031791 13.14554 
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Table 9: Summary Statistics of THPI by CMA 

City Mean St.Dev Min Pctl25 Pctl75 Max 

Calgary 140.1132 37.64993 74.90 96.1700 170.1200 188.35 

Edmonton 141.0873 40.26699 68.51 95.4925 173.4975 187.91 

Montreal 119.7770 30.54824 63.99 94.1900 149.4900 160.47 

Ottawa 116.7997 23.12802 71.80 98.5100 140.2800 147.49 

Quebec 130.4234 40.02894 65.85 93.3800 173.1100 183.19 

Toronto 123.4710 34.14376 75.69 96.2700 147.3300 218.30 

Vancouver 145.7239 44.01499 72.97 106.7100 170.7550 249.53 

Winnipeg 141.9777 47.67357 68.46 93.5400 189.9500 204.03 
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B. Figures and Charts 

Figure 1: THPI Growth Over Time By CMA 

 

 

Figure 2: PM2.5 Concentrations Over Time by CMA 
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Figure 3: Wind Direction over Time by CMA 

 


